

On the (intelligent) control of solar thermal plants.

Eduardo F. Camacho
University of Seville
Spain

OUTLINE

- Solar energy
- Thermal Solar plants control issues
- Parabolic trough plants
- Control experiences on commercial plants
- ERC Advanced Grant OCONTSOLAR
- Conclusions

Woody Allen:

"I took a speed reading course and read 'War and Peace' in twenty minutes. ...

..... It involves Russia."

Available Power

The cosine factor

Extraterrestial daily solar radiation and latitude

Average daily solar energy in Spain

Zona I: H < 3,8

Zona II: 3,8 ≤ H <4,2

Zona III: 4,2 ≤ H < 4,6

Zona IV: 4,6 ≤ H<5,0

Zona V: H ≥ 5,0

H se mide en kWh/m²

Solar power systems covering the dark disks could provide more than the world's total primary energy demand (assuming a conversion efficiency of 8%)

Use of solar energy

Photovoltaic units

Fixed

Solar tracking: 1 axis

Solar tracking: 2 axis (and concentration)

Concentrating Solar Power

Power tower

Parabolic trough

Control problems in solar systems

- Collectors movement (sun tracking)
 - Slow
 - Open loop (most of the time)

- Control of thermodynamic variables
 - Rich dynamics (PDEs, deadtimes, nonlinear, ...)
 - High disturbances
 - Closed loop (most of the time)

Parabolic trough fine tracking

Solar field

Process model

Metal: $\rho_m C_m A_m \partial T_m / \partial t = \eta_o I G - G H_I (T_m - T_a) - LH_t (T_m - T_f)$

Fluid: $\rho_f C_f A_f \partial T_f / \partial t + \rho_f C_f q \partial T_m / \partial x = LH_t (T_m - T_f)$

Simulink model can be downloaded from:

E.F. Camacho, et al. Advanced Control of Solar Power Plants, Springer, 1997

http://www.esi2.us.es/~eduardo/libro-s/libro.html

Why controlling the solar plants is a challenge?

- The energy source is not a manipulated variable but a perturbation!
- Complex dynamics: Non linear, PDE, dead time, never at a steady state
- Constraints (operating closed to constraints)
- Deciding the operating mode is part of the control strategy (when to store energy).

Many contributors and ... many control techniques!

- R. Carmona (1985)
- F.R. Rubio (1985)
- J.A. Gutierrez (1987)
- M. Hughes (1992)
- M. Berenguel (1995)
- J. Normey (1997)
- M. R. Arahal (1997)
- L. Valenzuela (2005)
- E. Zarza (2005)
- C. M. Cirre (2006)
- M.P. Parte (2005)
- I. Alvarado (2008)
- A. Gallego (2012-)
- L. Yebra (2017)
- J.R.D Frejo (2020)
- E. Masero (2021)
- S. R. Moreno(2021)
- A.S. del Pozo (2017- ..)
- J. M. Escaño (2019- ..)
-

- J. M. Lemos (1997)
- E. Mosca (1998)
- R.N. Silva (1997)
- L.M. Rato (1997)
- A.L. Cardoso (1999)
- A. Dourado (1999)
- T.A. Jonahansen (2000)
- M. Brao (2000)
- E. Juuso (2000)
- I. Farkas (2002)
- I. Vajk (2002)

•

MPC successful in industry.

Many and very diverse and successful applications:

Petrochemical, polymers,
Semiconductor production,
Air traffic control
Clinical anesthesia,

. . . .

Life Extending of Boiler-Turbine Systems via Model Predictive Methods, Li et al (2004)

Many MPC vendors

IFAC Pilot Industry Committee

Chaired by Tariq Samad (Honeywell), 28 total: 15 industry, 12 academia, 1 gov't;

Members asked to assess impact of several advanced control technologies:

Q1 Responses [23 responses]

- PID control: 23 High-impact
- Model-predictive control: 18 High-impact; 2 No/Lo impact
- System identification: 14 High-impact; 2 No/Lo impact
- Process data analytics: 14 High-impact; 4 No/Lo impact
- Soft sensing: 12 High-impact; 5 No/Lo impact
- Fault detection and identification [22]: 11 High-impact; 4 No/Lo impact
- Decentralized and/or coordinated control: 11 High-impact; 7 No/Lo impact
- Intelligent control: 8 High-impact; 7 No/Lo impact
- Discrete-event systems [22]: 5 High-impact; 7 No/Lo impact
- Nonlinear control: 5 High-impact; 8 No/Lo impact
- Adaptive control: 4 High-impact; 10 No/Lo impact
- Hybrid dynamical systems: 3 High-impact; 10 No/Lo impact
- Robust control: 3 High-impact; 10 No/Lo impact

Why is MPC so successful?

- MPC is Most general way of posing the control problem in the time domain:
 - Optimal control
 - Stochastic control
 - Known references
 - Measurable disturbances
 - Multivariable
 - Dead time
 - Constraints
 - Uncertainties

Real reason of success:

Economics

MPC can be used to optimize operating points (economic objectives). Optimum usually at the intersection of a set of constraints.

Obtaining smaller variance and taking constraints into account allow to operate closer to constraints (and optimum).

Repsol reported 2-6 months payback periods for new MPC applications.

MPC strategy

At sampling time t the future control sequence is compute so that the future sequence of predicted output y(t+k/t) along a horizon N follows the future references as best as possible.

The first control signal is used and the rest disregarded.

The process is repeated at the next sampling instant t+1

25

MPC strategy

1. Optimization problem $P_N(x,\Omega)$:

$$u^* = \arg\min_{u} \sum_{(i=0,...,N-1)} l(x(i),u(i)) + F(x(N))$$

Operating constaints.

$$X(i) \in X, \ u(i) \in U, \ i=0,...,N-1$$

Terminal constraint (stability): $x(N) \in \Omega$

2. Apply the receding horizon control law: $K_N(x)=u^*(0)$.

Linear MPC

f(x,u) is an affine function (model)

 X,U,Ω are polytope (constraints)

l and *F* are quadratic functions (or *1-norm* or

∞-norm functions *)*

QP or LP

Otherwise

If f(x,u) is not an affine function

Or any of X, U, Ω are not polyhedra

Or any of *l* and *F* are not quadratic functions

1-norm or ∞ **-norm** functions)

Non linear MPC (NMPC)

Non linear (non necessarily convex) optimization problem much more difficult to solve.

(or

PSA Acurex

(c) Dia claro con nubosidad al final del día

(d) Día con perturbaciones en la radiación

OUTLINE

- Solar energy
- Thermal Solar plants control issues
- Parabolic trough plants
- Control experiences on commercial plants
- ERC Advanced Grant OCONTSOLAR
- Conclusions

THERSIDAD OF SEVIL

Atlantica Yield Trough Plants

Spain (650 MWe)

- Solucar (3x50MWe)
- Helioenergy (2x50MWe)
- Solacor (2x50MWe)
- Helios (2x50MWe)
- Solaben (4x50MWe)

USA (560 MWe)

- Mojave (2x140 MWe)
- Solana (280 MWe) -

South Africa

Kaxu (100 MWe)

Solucar (3x50MWe)

Solucar (3x50MWe)

Kaxu

MPC application to real plants

- Solar field cannot be operated independently of steam generation system and turbines. It is necessary to take into account:
 - Steam pressure
 - HP valve aperture
 - Steam over-heating limitations
 - Power production limitations
 - Temperature gradients limitations
 - ...
- Heuristic needed

MPC application to real plants (Intelligence)

- We took some time in the control center of two 50 MW plants learning from experienced operators..
- We analized operator responses and searched for patterns.
- We translated patterns into a program

Level 3. Real plant results

Level 3. Real plant results

Level 2: Simulation vs a day operation. A gain of 4.8 MWh (net) for a 50MW plant

Optimal Control of Thermal Solar Energy Systems

Advanced Research Grant European Research Council

Solar trough energy plants will be taken as case studies

Objectives

- 1. Methods to control mobile sensor fleets and integrate them as an essential part of the overall control systems.
- 2. Spatially distributed solar irradiance estimation methods using a variable fleet of sensors mounted on drones and UGVs.
- 3. New model predictive control (MPC) algorithms that use mobile solar sensor estimations and predictions to yield safer and more efficient operation

Conclusions

MPC controllers:

- 1. Always better than the best operator. Production increase between 0.5% and 2.5% depending of operator and day.
- 2. No constraint violations.
- 3. Production not relying in the operator skills.
- 4. Short pay-back periods

OCONTSOLAR:

- 1. Better control and supervision with better information
- 2. Initial studies have shown gains of around 4%.

Thanks

Some references

- 1. E.F. Camacho, M. Berenguer, F.R. Rubio and Diego Martínez, Control of Solar Energy Systems, Springer, 2012,
- 1. E.F. Camacho and C. Bordons, *Model Predictive Control*, Springer, 2007

efcamacho@us.es